LETTERS TO THE EDITOR

New Example of the Application of Trivalent Phosphorus Derivatives in a Synthetic Chemistry of Carbohydrates

E. E. Nifant'ev^a, S. V. Metlitskikh^a, M. P. Koroteev^a, A. I. Stash^b, and V. K. Bel'skii^b

^a Moscow State Pedagogical University, Nesvizhskii per. 3, Moscow, 119021 Russia fax: +7(095)246-7766 e-mail: therion@hotmail.ru ^b Karpov Research Physicochemical Institute, Moscow, Russia

Received September 7, 2005

DOI: 10.1134/S1070363206060284

We found that reaction of β -pyranosylaminobenzenes with diphenylphosphinous acid in the presence of weak bases leads to formation of tertiary phosphine oxides containing aniline and α -furyl fragments in their structures.

R = H (I, IV), CH₂O (II, V).

The synthesis of compound **IV** was performed at 20–25°C, and compound **V** was synthesized at 50–55°C. The structures of the obtained compounds were proved by ¹H, ¹³C and, ³¹P NMR spectroscopy and X-ray diffraction.

Thus, we suggested a new original synthetic approach to representatives of the class of tertiary β -aminofurfurylphosphine oxides. Taking into account

the data in [1] we expect that these compounds will present interest as receptors of α -hydroxy acids.

The reaction of glycosylamines with compound **III** probably combines two processes: Kabachnik–Fields phosphorylation [2, 3] and aromatization of the initially formed phosphine oxides containing polyol fragments. This assumption is confirmed by the results of the reaction of compound **III** with partially protected glycosylamines **VI** and **VII**.

$$R = \begin{array}{c} C \\ CH_3 \end{array} (VI, VIII), \begin{array}{c} C \\ C \end{array} (VII, IX).$$

Tertiary phospine oxides IV and V (general procedure). N-Phenylglycoside **I** or **II**, 5 mmol, was dissolved in 5 ml of DMF and then 1 ml of pyridine and 5 mmol of compound **III** were added. The mixture was stirred for 5–6 h at 20–25°C (with **I**) or 50–

55°C (with **II**). The solvents were evaporated, and the residue was washed with benzene and subjected to chromatography on silica gel in ethanol–acetone (4:1).

N-[(Diphenylphosphinoyl)(2-furyl)methyl]aniline (IV). Yield 50%, mp 238-240°C (sublimes at 240°C), R_f 0.75. ¹H NMR spectrum (DMSO, δ , ppm): 5.85-6.02 m (2H, NCHP, NH); furan fragment: 6.21 m (H, H4, ${}^{3}J_{HH}$ 3.3 Hz); 6.30 m (H, H 3 , ${}^{4}J_{H,NCHP}$ 2.7 Hz); 7.35 m (H, H⁵); aniline fragment: 6.57 d.d (H, H⁴); 6.89 d (2H, H², H⁶, ${}^{3}J_{HH}$ 7.6 Hz); 7.02 d.d (2H, H³, H⁵, ³J_{HH} 8.5 Hz); diphenylphosphinoyl fragment: 7.43–7.52 m (6H, 2H³, 2H⁴, 2H⁵); 7.75– 7.98 m (4H, 2H², ${}^{3}J_{\text{HH}}$ 9.9 Hz, ${}^{3}J_{\text{HP}}$ 59.3 Hz, 2H⁶, ${}^{3}J_{\text{HH}}$ 10.4 Hz, ${}^{3}J_{\text{HP}}$ 58.7 Hz). ${}^{13}\text{C}$ NMR spectrum (DMSO, δ_{C} , ppm): 50.3 d (NCHP, ${}^{1}J_{\text{CP}}$ 81.6 Hz); furan fragment: 109.5 d (C^3 , ${}^3J_{CP}$ 5.0 Hz); 110.4 (C^4); 142.4 (C^5); 149.9 (C^2); aniline fragment: 113.9 (C^2 , C^6); 117.5 (C^4); 128.6 (C^3 , C^5); 147.1 d (C1, $^3J_{CP}$ 10.9 Hz); diphenylphosphinoyl fragment: 128.1-128.4 m ($2C^3$, $2C^5$); 130.3–133.2 m ($2C^1$, $2C^4$, $2C^2$, $2C^6$). ³¹P NMR spectrum (DMSO): δ_P 29.1 ppm.

{5-[(Diphenylphosphinoyl)(phenylamino)methyl]-2-furyl}methanol (V). Yield 38%, mp 197– 198°C, R_f 0.70. ¹H NMR spectrum (DMSO- d_6 , δ , ppm): 5.97–6.04 m (3H, NCHP, NH, H⁴ furan); furan fragment: 4.11 m (2H, CH₂); 5.07 t [1H, OH, ${}^{3}J(H,CH_{2})$ 6.0 Hz]; 6.28 m (1H, H³); aniline fragment: 6.57 d.d (1H, H⁴, ${}^{3}J_{HH}$ 6.4 Hz); 6.93 d (2H, H², H⁶, ${}^{3}J_{HH}$ 7.6 Hz); 7.02 d.d (2H, H³, H⁵, ${}^{3}J_{HH}$ 7.2 Hz); diphenylphosphinoyl fragment: 7.43–7.50 m (6H, 2H³, 2H⁴, 2H⁵); 7.77–8.01 m (4H, 2H², 2H⁶). ¹³C NMR spectrum (DMSO, $\delta_{\rm C}$, ppm): 50.2 d (NCHP, $^1J_{\rm CP}$ 82.2 Hz); furan fragment: 55.3 (CH₂); 107.3 (C³); 109.9 d (C^4 , ${}^4J_{CP}$ 5.0 Hz); 148.7 (C^5); 154.6 (C^2); aniline fragment: 113.7 (C², C⁶); 117.2 (C⁴); 128.6 (C^3, C^5) ; 146.8 d $(C^1, {}^3J_{CP} 11.3 Hz)$; diphenylphosphinoyl fragment: $127.8-128.5 \text{ m} (2\text{C}^3, 2\text{C}^5)$; 130.6- $132.4 \text{ m } (2\text{C}^1, 2\text{C}^4, 2\text{C}^2, 2\text{C}^6).$ ³¹P NMR spectrum (DMSO- d_6): δ_P 29.2 ppm.

Tertiary phosphine oxides VIII and IX (general procedure). N-glycoside **VI** or **VII**, 5 mmol, was dissolved in a mixture of 5 ml of chloroform and 1 ml of pyridine, 5 mmol of compound **III** was added, and the mixture was stirred for 24 h at 80–85°C. The solvents were evaporated, and the syrup-like residue was subjected to chromatography on silica gel in benzeneacetonitrile—hexane (4:2:1).

1,2;4,5-Di-O-isopropylidene-6-(diphenylphosphinoyl)-6-(phenylamino)hexane-1,2(R),3(R),4(S), 5(S)-pentaol (VIII). Yield 70%. Product VIII (as a mixture of two isomers) is a yellow syrup. R_f 0.46.

¹³C NMR spectrum of **VIIIa** (DMSO, δ_C , ppm): isopropylidene fragment: 25.3–27.3 (H_3CCCH_3) ; $108.5 \text{ (O}^4C(\text{CH}_3)_2\text{O}^5)$; $108.6 \text{ (O}^1C(\text{CH}_3)_2\text{O}^2)$; hexane fragment: 50.6 d (C6, ${}^{1}J_{CP}$ 81.7 Hz); 66.9 (C¹); 68.9 (C^3) ; 75.2 (C^4) ; 75.9 (C^2) ; 77.3 d $(C^5, {}^2J_{CP} 11.6 Hz)$; aniline fragment: 112.9 (C², C⁶); 117.1 (C⁴); 128.9 (C^3, C^5) ; 147.6 d $(C^1, {}^3J_{CP} 5.5 Hz)$; diphenylphosphinoyl fragment: 127.6-128.2 m (2C³, 2C⁵); 130.6-133.7 m (2C¹, 2C⁴, 2C², 2C⁶). ¹³C NMR spectrum of **VIIIb** (DMSO- d_6 , δ , ppm): isopropylidene fragment: 25.3–27.3 (H_3CCCH_3); 108.2 ($O^4C(CH_3)_2O^5$); 108.8 $(O^1C(CH_3)_2O^2)$; hexane fragment: 54.7 d $(C^6, {}^1J_{CP})$ 77.8 Hz); 66.4 (C¹); 69.6 (C³); 74.9 d (C⁴, ${}^{3}J_{CP}$ 5.4 Hz); 76.0 (C²); 80.2 d (C⁵, ${}^{2}J_{CP}$ 8.6 Hz); aniline fragment: 112.8 (C^2 , C^6); 116.5 (C^4); 128.6 (C^3 , C^5); 147.3 d (C¹, ³J_{CP} 3.5 Hz); diphenylphosphinoyl fragment: $127.6-128.2 \text{ m} (2\text{C}^3, 2\text{C}^5)$; 130.6-133.7 m $(2C^{1}, 2C^{4}, 2C^{2}, 2C^{6})$. ³¹P NMR spectrum (DMSO- d_{6} , δ_{p} , ppm): 29.5 (31.3%, **VIIIa**); 31.0 (68.7%, **VIIIb**).

1,2;4,5-Di-O-cyclohexylidene-6-(diphenylphosphinoyl)-6-(phenylamino)hexane-1,2(R),3(R),4(S), 5(S)-pentaol (IX). Yield 75%, light yellow syrup, slowly crystallizes on standing. R_f 0.58. ¹³C NMR spectrum of isomer IXa (DMSO, δ_C , ppm): cyclohexylidene fragment: 21.2-24.4, 34.2-36.1 (H₂C); 108.4 ($O^4C(CH_2)_2O^5$); 108.7 ($O^1C(CH_2)_2O^2$); hexane fragment: 50.7 d (C^6 , $^1J_{CP}$ 83.4 Hz); 66.1 (C^1); 68.9 (C^3) ; 74.4 (C^4) ; 75.3 (C^2) ; 76.6 d $(C^5, {}^2J_{CP} 11.5 Hz)$; aniline fragment: $112.6 (C^2, C^6)$; $117.1 (C^4)$; 127.5 (C^3, C^5) ; 146.9 d $(C^1, {}^3J_{CP}$ 6.0 Hz); diphenylphosphinoyl fragment: 127.5–128.7 m (2C³, 2C⁵); 130.4– 133.5 m (2C¹, 2C⁴, 2C², 2C⁶). ¹³C NMR spectrum of isomer IXb (DMSO- d_6 , δ , ppm): cyclohexylidene fragment: 21.2–24.4, 34.2–36.1 (H₂C); 108.3 (O⁴C· $(CH_2)_2O^5$; 108.6 $(O^1C(CH_2)_2O^2)$; hexane fragment: 54.2 d (C6, ¹J_{CP} 77.6 Hz); 65.7 (C¹); 69.0 (C³); 73.4 d $(C^4, {}^3J_{CP} 3.4 \text{ Hz}); 78.9 (C^2); 79.8 \text{ d} (C^5, {}^2J_{CP} 9.6 \text{ Hz});$ aniline fragment: 112.2 (C², C⁶); 116.0 (C⁴); 128.2 (C^3, C^5) ; 146.7 d $(C^1, {}^3J_{CP} 3.1 Hz)$; diphenylphosphinoyl fragment: 127.5–128.7 m (2C³, 2C⁵); 130.4– 133.5 m (2C¹, 2C⁴, 2C², 2C⁶). ³¹P NMR spectrum (DMSO- d_6 , δ_p , ppm): 28.4 (40.65%, isomer **IXa**); 30.9 (59.35%, isomer **IXb**).

ACKNOWLEDMENTS

The authors are grateful to A.A. Borisenko for help in recording the NMR spectra.

REFERENCES

- 1. Stoikov, I.I., Fittseva, N.A., Akhmetzyanova, L.R., Gafiullina, L.I., Antipin, I.S., Zheltukhin, V.F., Devyatirekova, A.I., and Al'fonsov, V.A., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 2004, no. 7, p. 1517.
- 2. Kabachnik, M.I., *Usp. Khim.*, 1974, vol. 9, no. 43, p. 1554.
- 3. Nifant'ev, E.E., *Khimiya gydrofosforil'nykh soedinenii* (Chemistry of Hydrophosphoryl Compounds), Moscow: Nauka, 1983, p. 205.